

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$.(C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

1. Calculate the limits of f at the boundaries of D.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^4 = (+\infty)^4 = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^4 = (-\infty)^4 = +\infty$$

$$2 \cdot \overline{S} = 0 \text{ and interpret graphically.}$$

$$f(x) = 0$$
; $x^4 + 2x^3 = 0$
 $x^3(x+2) = 0$
 $x = 0$ or $x + 2 = 0$
 $x = -2$

Graphical interpretation:

(C) Cuts (x'x) at 2 points: (0;0) and (-2;0).

ts

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$.(C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

3. Find f'(x) and set up the table of variations of f.

$$f'(x) = 4x^3 + 6x^2$$

 $f'(x) = 0$; $2x^2(2x + 3) = 0$
 $x = 0$ or $2x + 3 = 0$
 $x = -\frac{3}{2}$

\mathcal{X}	- ∞	-	2		0	+ ∞
f'(x)	-	_	0	+	0	+
f(x)	+∞		<u></u>	59	0	+ ∞

$$f(0) = 0^5 + 2(0)^3 = 0$$

$$f\left(-\frac{3}{2}\right) = \left(-\frac{3}{2}\right)^4 + 2\left(-\frac{3}{2}\right)^3 = -1.69$$

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$.(C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

4. Write the equation of the tangent (T) at point A of abscissa 0. and study the relative position between (T) and (C).

At x = 0: f'(0) = 0 so (T) is a horizontal line

Then the equation of the tangent (T) is $y = y_A = 0$

Hence, (T) is (x'x).

Relative position:

$$f(x) - y_{(T)} = x^4 + 2x^3 - 0$$

$$= x^4 + 2x^3 = x^3(x+2) \quad x + 2 \quad - \quad 0 \quad + \quad x = 0 \quad \text{or} \quad x = -2$$

$$f(x) - y \quad + \quad 0 \quad - \quad 0$$

	$\boldsymbol{\mathcal{X}}$		- 2		0	
	x^3			_	0	+
(2) x	+ 2		0	+		+
f(x)	- <i>y</i>	+	0	_	0	+
Posit	tion	(C) above (T)	C) cuts (T)	(C) below (T)	C) cuts (T)	(C) above (T)

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$. (C) its representative curve in an orthonormal system $(0; \vec{\imath}; \vec{\jmath})$.

5. Plot (C).

- > Start by the extrema
- Plot Particular points
- > Start drawing the curve based on the table of variations.

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$. (C) its representative curve in an orthonormal system $(0; \vec{\imath}; \vec{\jmath})$.

5. Plot (C).

Pay attention the curve must be tangent to the horizontal tangent.

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$. (C) its representative curve in an orthonormal system $(0; \vec{\imath}; \vec{\jmath})$.

5. Plot (C).

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$. (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

To be more precise, you can calculate f(1) then, you continue drawing.

6. Consider the following functions:

a)
$$h(x) = |f(x)|$$

$$b) k(x) = f(|x|)$$

c)
$$g(x) = f(x + 2)$$

How can you deduce the curves of these three functions from (C).

a)
$$h(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ x \in] - \infty; -2] \cup [0; +\infty[\\ (C_h) = (C_f) \\ -f(x) & \text{if } f(x) \le 0 \\ x \in [-2; 0] \\ (C_h) = Sym_{(x'x)}^{(C_f)} \end{cases}$$

Consider the function f defined over D=IR by $f(x) = x^4 + 2x^3$. (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

6. Consider the following functions:

a)
$$h(x) = |f(x)|$$

$$b) k(x) = f(|x|)$$

c)
$$g(x) = f(x + 2)$$

How can you deduce the curves of these three functions from (C).

b)
$$k(x) = \begin{cases} f(x) & \text{if } x \ge 0 \\ (C_k) = (C_f) \\ f(-x) & \text{if } x \le 0 \\ (C_k) = Sym_{(y'y)}^{(C_f)} \end{cases}$$

6. Consider the following functions:

a)
$$h(x) = |f(x)|$$

$$b) k(x) = f(|x|)$$

c)
$$g(x) = f(x + 2)$$

How can you deduce the curves of these three functions from (C).

c)
$$g(x) = f(x+2)$$

So (C_x) is the translati

So (C_g) is the translation of (C_f) by the vector (-2;0).

